Hyperbolic Graph Attention Network

نویسندگان

چکیده

Graph neural network (GNN) has shown superior performance in dealing with structured graphs, which attracted considerable research attention recently. Most of the existing GNNs are designed Euclidean spaces; however, real-world spatial data can be non-Euclidean surfaces (e.g., hyperbolic spaces). For example, biologists may inspect geometric shape a protein surface to determine its interaction other biomolecules for drug discovery. Although there is growing on generalizing surfaces, works these fields still scarce. In this paper, we exploit graph learn robust node representations graphs spaces. As gyrovector space framework provides an elegant algebraic formalism geometry, utilize Specifically, first use operations defined transform features graph; and proximity product spaces model multi-head mechanism setting; afterward, further devise parallel strategy using logarithmic exponential maps improve efficiency our proposed model. The comprehensive experimental results demonstrate effectiveness model, compared state-of-the-art methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Graph Generator

Networks representing many complex systems in nature and society share some common structural properties like heterogeneous degree distributions and strong clustering. Recent research on network geometry has shown that those real networks can be adequately modeled as random geometric graphs in hyperbolic spaces. In this paper, we present a computer program to generate such graphs. Besides real-...

متن کامل

Attention-based Graph Neural Network for Semi-supervised Learning

Recently popularized graph neural networks achieve the state-of-the-art accuracy on a number of standard benchmark datasets for graph-based semi-supervised learning, improving significantly over existing approaches. These architectures alternate between a propagation layer that aggregates the hidden states of the local neighborhood and a fully-connected layer. Perhaps surprisingly, we show that...

متن کامل

Hybed: Hyperbolic Neural Graph Embedding

Neural embeddings have been used with great success in Natural Language Processing (NLP). They provide compact representations that encapsulate word similarity and attain state-of-the-art performance in a range of linguistic tasks. The success of neural embeddings has prompted significant amounts of research into applications in domains other than language. One such domain is graph-structured d...

متن کامل

Graph Attention Networks

We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods’ features, we enable (implicitly) specifying different weight...

متن کامل

Deep Graph Attention Model

Graph classification is a problem with practical applications in many different domains. Most of the existing methods take the entire graph into account when calculating graph features. In a graphlet-based approach, for instance, the entire graph is processed to get the total count of different graphlets or subgraphs. In the real-world, however, graphs can be both large and noisy with discrimin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Big Data

سال: 2021

ISSN: ['2372-2096', '2332-7790']

DOI: https://doi.org/10.1109/tbdata.2021.3081431